Формула площади полной поверхности призмы. Объём и площадь поверхности правильной четырёхугольной призмы

Призма. Все что нужно знать для подготовки к ЕГЭ по математике

Формула площади полной поверхности призмы. Объём и площадь поверхности правильной четырёхугольной призмы



Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Привет!

Сейчас я расскажу тебе ВСЕ о призме. Без воды. Только то, что нужно.

Помни о своей цели! Тебе нужно подготовиться к ЕГЭ по математике так чтобы поступить в ВУЗ мечты!

Это самый лучший материал в инете.

Не веришь?

Посмотри отзывы внизу статьи и ты все поймешь… И, кстати, можешь оставить свои.

Ладно, хватит болтать – к делу!

формула объема призмы Необычная формула объёма призмы Объем правильной треугольной призмы Объем правильной четырёхугольной призмы Объем правильной шестиугольной призмы Площадь поверхности призмы А здесь ты можешь скачать весь текст в pdf формате. ПРИЗМА. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ Теперь я хочу услышать тебя!

Определение призмы

  • Призма — многогранник, две грани которого (основания) — равные многоугольники, лежащие в параллельных плоскостях, а боковые грани — параллелограммы.

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

Виды призм

  • Призма, основанием которой является параллелограмм, называется параллелепипедом.
  • Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
  • Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.

Объем и площадь призмы

формула объема призмы:

 ,

где   — площадь основания,

  — высота.

 

Необычная формула объема призмы:

 ,

где   – площадь сечения, перпендикулярного боковому ребру,

  – длина бокового ребра.

Площадь полной поверхности призмы – сумма площадей всех граней.

А теперь подробнее….

Что такое призма

Давай ответим сперва картинками:

Смотри: у призмы сверху и снизу два одинаковых многоугольника – они называются основаниями. Остальные грани называются боковыми.

Плоскости оснований параллельный. Боковые грани – параллелограммы.

Рисуем ещё раз:

А теперь: рёбра.

Смотри: бывают рёбра основания и боковые рёбра.

Важно знать, что:

Все боковые рёбра призмы равны и параллельны.
  • Если в основании призмы лежит треугольник, то призма называется треугольной, если четырёхугольник, то – четырёхугольной и так далее.
  • Бывают и десятиугольные, и двадцатиугольные призмы, но , к счастью, не в твоих задачах.
  • А у тебя будут встречаться чаще всего треугольные, четырёхугольные и шестиугольные призмы.

Высота призмы

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

И ясно, что та же самая высота получится, если опустить перпендикуляр из любой точки на верхней плоскости.

Согласен?

Прямая призма

Если боковые рёбра призмы перпендикулярны основанию, то призма называется прямой.

У прямой призмы:

  • все боковые грани прямоугольники;
  • все сечения проходящие через боковые рёбра – прямоугольники;
  • и даже сечения, проходящие только через одно боковое ребро – прямоугольники.
У прямой призмы высота совпадает с боковым ребром.

Правильная призма

Если боковые рёбра призмы перпендикулярны основанию, а в основании лежит правильный многоугольник, то призма называется правильной.

То есть правильная призма – это прямая призма, у которой в основании правильный многоугольник.

Тебе, скорее всего, может встретиться:

1) Правильная треугольная призма – в основании правильный треугольник, боковые грани – прямоугольники.

2) Правильная четырёхугольная призма – это ещё и разновидность прямоугольного параллелепипеда – в основании квадрат, боковые грани – прямоугольники.

3) Правильная шестиугольная призма – в основании правильный шестиугольник, боковые грани – прямоугольники.

формула объема призмы

  –площадь основания

  – высота

Эта формула верна для любой призмы, но если призма прямая, то   «превращается» в боковое ребро. И тогда

– то же самое, что

Необычная формула объёма призмы

Представь себе, есть ещё одна, «перевёрнутая» формула для объёма призмы .

  – площадь сечения, перпендикулярного боковому ребру,

  – длина бокового ребра.

Используется ли эта формула в задачах? Честно говоря, довольно редко, так что можешь ограничиться знанием основной формулы объёма.

Давай теперь для упражнения посчитаем объём самых популярных призм.

Объем правильной треугольной призмы

Пусть дано, что сторона основания равна  , а боковое ребро равно  .

Найдём объём:

Вспомним, как находить площадь правильного треугольника

Подставляем в формулу объёма:

 .

Объем правильной четырёхугольной призмы

Опять дано: сторона основания равна  , боковое ребро равно  .

Ну, площадь квадрата долго искать не надо:

Значит,  .

Объем правильной шестиугольной призмы

Что же такое  ? Как найти?

Смотри: шестиугольник   состоит из шести одинаковых правильных треугольников.

Значит:  

Ну и теперь  .

Площадь поверхности призмы

Площадь боковой поверхности призмы – сумма площадей всех боковых граней.

Есть ли общая формула?

 

Нет, в общем случае нет. Просто нужно искать площади боковых граней и суммировать их.

Площадь полной поверхности призмы – сумма площадей всех граней.

Формулу можно написать для прямой призмы:

Но всё-таки гораздо проще в каждом конкретном случае сложить все площади, чем запоминать дополнительные формулы.

 , где   – периметр основания.

 .

Для примера посчитаем полную поверхность правильной шестиугольной призмы.

Пусть сторона основания равна  , а боковое ребро равно  .

Все боковые грани – прямоугольники. Значит  .

  – это уже выводили при подсчёте объёма.

Итак, получаем:

 .

ПРИЗМА. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Определение

  • Призма — многогранник, две грани которого (основания) — равные многоугольники, лежащие в параллельных плоскостях, а боковые грани — параллелограммы.

Высота призмы – перпендикуляр, опущенный из одной из вершин призмы на плоскость противоположного основания.

2. Виды призм:

  • Призма, основанием которой является параллелограмм, называется параллелепипедом.
  • Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
  • Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.

3. Объем и площадь призмы:

  • формула объема призмы:  , где   — площадь основания,   — высота.
  • Необычная формула объема призмы:  , где   – площадь сечения, перпендикулярного боковому ребру,   – длина бокового ребра.
  • Площадь полной поверхности призмы – сумма площадей всех граней.  .

Теперь я хочу услышать тебя!

Я постаралась сжато, без воды рассказать о том, что такое призма.

Что тебе понравилось? Что не понравилось?

Может быть ты нашел ошибку?

Или знаешь другой хороший материал на эту тему? 

Источник: https://youclever.org/book/prizma-1

Объём и площадь поверхности правильной четырёхугольной призмы

Формула площади полной поверхности призмы. Объём и площадь поверхности правильной четырёхугольной призмы

В школьной программе по курсу стереометрии изучение объёмных фигур обычно начинается с простого геометрического тела — многогранника призмы. Роль её оснований выполняют 2 равных многоугольника, лежащих в параллельных плоскостях.

Частным случаем является правильная четырёхугольная призма.

Её основами являются 2 одинаковых правильных четырёхугольника, к которым перпендикулярны боковые стороны, имеющие форму параллелограммов (или прямоугольников, если призма не наклонная).

Как выглядит призма

Правильной четырёхугольной призмой называется шестигранник, в основаниях которого находятся 2 квадрата, а боковые грани представлены прямоугольниками. Иное название для этой геометрической фигуры — прямой параллелепипед.

Рисунок, на котором изображена четырёхугольная призма, показан ниже.

На картинке также можно увидеть важнейшие элементы, из которых состоит геометрическое тело. К ним принято относить:

  1. Основы призмы — квадраты LMNO и L₁M₁N₁O₁.
  2. Боковые грани — прямоугольники MM₁L₁L, LL₁O₁O, NN₁O₁O и MM₁N₁N, расположенные под прямым углом к основаниям.
  3. Боковые рёбра — отрезки, расположенные на стыке между двумя боковыми гранями: M₁M, N₁N, O₁O и L₁L. Также выполняют роль высоты (поскольку лежат в параллельной основаниям плоскости). В призме боковые рёбра всегда равны между собой — это одно из важнейших свойств этого геометрического тела.
  4. Диагонали, которые, в свою очередь, подразделяются ещё на 3 категории. К ним относится 4 диагонали основания (MO, N₁L₁), 8 диагоналей боковых граней (ML₁, O₁L) и 4 диагонали призмы, начала и концы которых являются вершинами 2 разных оснований и боковых сторон (MO₁, N₁L).

Иногда в задачах по геометрии можно встретить понятие сечения. Определение будет звучать так: сечение — это все точки объёмного тела, принадлежащие секущей плоскости.

Сечение бывает перпендикулярным (пересекает рёбра фигуры под углом 90 градусов).

Для прямоугольной призмы также рассматривается диагональное сечение (максимальное количество сечений, которых можно построить — 2), проходящее через 2 ребра и диагонали основания.

Если же сечение нарисовано так, что секущая плоскость не параллельна ни основам, ни боковым граням, в результате получается усечённая призма.

Для нахождения приведённых призматических элементов используются различные отношения и формулы. Часть из них известна из курса планиметрии (например, для нахождения площади основания призмы достаточно вспомнить формулу площади квадрата).

Площадь поверхности и объём

Чтобы определить объём призмы по формуле, необходимо знать площадь её основания и высоту:

V = Sосн·h

Так как основанием правильной четырёхгранной призмы является квадрат со стороной a, можно записать формулу в более подробном виде:

V = a²·h

Если речь идёт о кубе — правильной призме с равной длиной, шириной и высотой, объём вычисляется так:

V = a³

Чтобы понять, как найти площадь боковой поверхности призмы, необходимо представить себе её развёртку.

Из чертежа видно, что боковая поверхность составлена из 4 равных прямоугольников. Её площадь вычисляется как произведение периметра основания на высоту фигуры:

Sбок = Pосн·h

С учётом того, что периметр квадрата равен P = 4a, формула принимает вид:

Sбок = 4a·h

Для куба:

Sбок = 4a²

Для вычисления площади полной поверхности призмы нужно к боковой площади прибавить 2 площади оснований:

Sполн = Sбок + 2Sосн

Применительно к четырёхугольной правильной призме формула имеет вид:

Sполн = 4a·h + 2a²

Для площади поверхности куба:

Sполн = 6a²

Зная объём или площадь поверхности, можно вычислить отдельные элементы геометрического тела.

Нахождение элементов призмы

Часто встречаются задачи, в которых дан объём или известна величина боковой площади поверхности, где необходимо определить длину стороны основания или высоту. В таких случаях формулы можно вывести:

  • длина стороны основания: a = Sбок / 4h = √(V / h);
  • длина высоты или бокового ребра: h = Sбок / 4a = V / a²;
  • площадь основания: Sосн = V / h;
  • площадь боковой грани: Sбок. гр = Sбок / 4.

Чтобы определить, какую площадь имеет диагональное сечение, необходимо знать длину диагонали и высоту фигуры. Для квадрата d = a√2. Из этого следует:

Sдиаг = ah√2

Для вычисления диагонали призмы используется формула:

dприз = √(2a² + h²)

Чтобы понять, как применять приведённые соотношения, можно попрактиковаться и решить несколько несложных заданий.

Примеры задач с решениями

Вот несколько заданий, встречающихся в государственных итоговых экзаменах по математике.

Задание 1.

В коробку, имеющую форму правильной четырёхугольной призмы, насыпан песок. Высота его уровня составляет 10 см. Каким станет уровень песка, если переместить его в ёмкость такой же формы, но с длиной основания в 2 раза больше?

Решение.

Следует рассуждать следующим образом. Количество песка в первой и второй ёмкости не изменялось, т. е. его объём в них совпадает. Можно обозначить длину основания за a. В таком случае для первой коробки объём вещества составит:

V₁ = ha² = 10a²

Для второй коробки длина основания составляет 2a, но неизвестна высота уровня песка:

V₂ = h (2a)² = 4ha²

Поскольку V₁ = V₂, можно приравнять выражения:

10a² = 4ha²

После сокращения обеих частей уравнения на a² получается:

10 = 4h

В результате новый уровень песка составит h = 10 / 4 = 2,5 см.

Задание 2.

ABCDA₁B₁C₁D₁ — правильная призма. Известно, что BD = AB₁ = 6√2. Найти площадь полной поверхности тела.

Решение.

Чтобы было проще понять, какие именно элементы известны, можно изобразить фигуру.

Поскольку речь идёт о правильной призме, можно сделать вывод, что в основании находится квадрат с диагональю 6√2. Диагональ боковой грани имеет такую же величину, следовательно, боковая грань тоже имеет форму квадрата, равного основанию. Получается, что все три измерения — длина, ширина и высота — равны. Можно сделать вывод, что ABCDA₁B₁C₁D₁ является кубом.

Длина любого ребра определяется через известную диагональ:

a = d / √2 = 6√2 / √2 = 6

Площадь полной поверхности находится по формуле для куба:

Sполн = 6a² = 6·6² = 216

Задание 3.

В комнате производится ремонт. Известно, что её пол имеет форму квадрата с площадью 9 м². Высота помещения составляет 2,5 м. Какова наименьшая стоимость оклейки комнаты обоями, если 1 м² стоит 50 рублей?

Решение.

Поскольку пол и потолок являются квадратами, т. е. правильными четырёхугольниками, и стены её перпендикулярны горизонтальным поверхностям, можно сделать вывод, что она является правильной призмой. Необходимо определить площадь её боковой поверхности.

Длина комнаты составляет a = √9 = 3 м.

Обоями будет оклеена площадь Sбок = 4·3·2,5 = 30 м².

Наименьшая стоимость обоев для этой комнаты составит 50·30 = 1500 рублей.

Таким образом, для решения задач на прямоугольную призму достаточно уметь вычислять площадь и периметр квадрата и прямоугольника, а также владеть формулами для нахождения объёма и площади поверхности.

Как найти площадь куба

Источник: https://1001student.ru/matematika/obyom-i-ploshhad-poverhnosti-pravilnoj-chetyryohugolnoj-prizmy.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.