Деление круга на 10 равных частей. Деление окружности на равные части

Деление окружности на любое число равных частей

Деление круга на 10 равных частей. Деление окружности на равные части

  Окружностью называется замкнутая кривая линия, каждая точка которой расположена на одинаковом расстоянии от одной точки О, называемой центром.

  Прямые линии, соединяющие любую точку окружности с её центром, называют радиусами R.

  Прямая АВ, соединяющая две точки окружности и проходящая через её центр О, называется диаметром D.

  Части окружностей называются дугами.

  Прямая СD, соединяющая две точки на окружности, называется хордой.

  Прямая МN,которая имеет только одну общую точку с окружностью называется касательной.

  Часть круга, ограниченная хордой СD и дугой, называется сигментом.

Часть круга, ограниченная двумя радиусами и дугой, называется сектором.

  Две взаимно перпендикулярные горизонтальная и вертикальная линии, пересекающиеся в центре окружности, называются осями окружности.

  Угол, образованный двумя радиусами КОА, называется центральным углом.

  Два взаимно перпендикулярных радиуса составляют угол в 900 и ограничивают 1/4 окружности.

Деление окружности на 4 и 8 одинаковых частей

  Проводим окружность с горизонтальной и вертикальной осями, которые делят её на 4-ре равные части. Проведённые с помощью циркуля или угольника под 450, две взаимно перпендикулярные линии делят окружность на 8-мь равных частей.

Деление окружности на 3 и 6 равных частей (кратные 3 трём)

  Для деления окружности на 3, 6 и кратное им количество частей, проводим окружность заданного радиуса и соответствующие оси. Деление можно начинать от точки пересечения горизонтальной или вертикальной оси с окружностью.

Заданный радиус окружности последовательно откладывается 6-ть раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шести-угольник.

Соединение точек через одну даёт равносторонний треугольник, и деление окружности на три равные части.

Деление окружности на 5 и 10 равных частей

  Построение правильного пятиугольника выполняется следующим образом. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1.

Из полученной точки “а” в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке “b”. Радиусом R3 из точки “1” проводят дугу окружности до пересечения с заданной окружностью (т.5) и получают сторону правильного пятиугольника.

Расстояние “b-О” даёт сторону правильного десятиугольника.

Деление окружности на N-ное количество одинаковых частей (построение правильного многоугольника с N сторон)

  Выполняется следующим образом. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки “1” окружности проводим под произвольным углом к вертикальной оси прямую линию.

На ней откладываем равные отрезки произвольной длины, число которых равно числу частей на которое мы делим данную окружность, например 9. Конец последнего отрезка соединяем с нижней точкой вертикального диаметра.

Проводим линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей.

Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности. Из точек M и N проводим лучи через чётные ( или нечётные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т.к. точки 1, 2, …. 9 делят окружность на 9-ть ( N ) равных частей.

Нахождение центра дуги окружности

  Для нахождения центра дуги окружности нужно выполнить следующие построения: на данной дуге отмечаем четыре произвольные точки А, В, С, D и соединяем их попарно хордами АВ и СD.

Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды.

Взаимное пересечение этих перпендикуляров даёт центр данной дуги и соответствующей ей окружности.

Площади фигур Формулы для расчёта площадей двумерных геометрических фигур. Площадь треугольника, квадрата, параллелограмма, ромба, трапеции, правильного многоугольника.

Источник: https://inter-net.pro/arifmetika/delenie-okruzhnosti-na-ravnye-chasti

ЧЕРЧЕНИЕ. Школьный интернет-учебник – Чтение чертежей 3-1

Деление круга на 10 равных частей. Деление окружности на равные части

При выполнении графических работ приходится решать многие задачи на построение. Наиболее встречающиеся при этом задачи — деление отрезков прямой, углов и окружностей на равные части, построение различных сопряжений.

Деление окружности на равные части с помощью циркуля

Пользуясь радиусом, нетрудно разделить окружность и на 3, 5, 6, 7, 8, 12  равных участков.

Деление окружности на четыре равные части.

Штрихпунктирные центровые линии, проведенные перпендикулярно одна другой, делят окружность на четыре равные части. Последовательно соединив их концы, получим правильный четырехугольник (рис. 1).

Рис.1Деление окружности на 4 равные части.

Деление окружности на восемь равных частей.

Чтобы разделить окружность на восемь равных частей, дуги, равные четвертой части окружности, делят пополам.

Для этого из двух точек, ограничивающих четверть дуги, как из центров радиусов окружности выполняют засечки за ее пределами.

Полученные точки соединяют с центром окружностей и на пересечении их с линией окружности получают точки, делящие четвертные участки пополам, т. е. получают восемь равных участков окружности (рис. 2).

Рис.2. Деление окружности на 8 равных частей.

Деление окружности на шестнадцать равных частей.

Разделив циркулем дугу, равную 1/8, на две равные части, нанесём засечки на окружность. Соединив все засечки, отрезками прямых, получим правильный шестнадцатиугольник.

Рис.3. Деление окружности на 16 равных частей.

Деление окружности на три равные части.

Чтобы разделить окружность радиуса R на 3 равные части, из точки пересечения центровой линии с окружностью (например, из точки А) описывают как из центра дополнительную дугу радиусом R. Получают точки 2 и 3. Точки 1, 2, 3 делят окружность на три равные части.

Рис. 4. Деление окружности на 3 равные части.

Деление окружности на шесть равных частей. Сторона правильного шестиугольника, вписанного в окружность, равна радиусу окружности (рис. 5.).

Для деления окружности на шесть равных частей надо из точек 1 и 4 пересечения центровой линии с окружностью сделать на окружности по две засечки радиусом R, равным радиусу окружности. Соединив полученные точки отрезками прямых, получим правильный шестиугольник.

Рис. 5. Деление окружности на 6 равных частей

Деление окружности на двенадцать равных частей.

Чтобы разделить окружность на двенадцать равных частей, надо окружность поделить на четыре части взаимно перпендикулярными диаметрами.

Приняв точки пересечения диаметров с окружностью А, В, С, Dза центры, величиной радиуса проводят четыре дуги до пересечения с окружностью.

Полученные точки 1, 2, 3, 4, 5, 6, 7, 8 и точки А, В, С, Dразделяют окружность на двенадцать равных частей (рис. 6).

Рис. 6. Деление окружности на 12 равных частей

Деление окружности на пять равных частей

Из точки А проведем дугу тем же радиусом, что и радиус окружности до пересечения с окружностью – получим точку В. Опустив перпендикуляр с этой точки – получим точку С.

   Из точки С – середины радиуса окружности, как из центра, дугой радиуса СD сделаем засечку на диаметре, получим точку Е. Отрезок равен длине стороны вписанного правильного пятиугольника.

Сделав радиусом засечки на окружности, получим точки деления окружности на пять равных частей.

Рис. 7. Деление окружности на 5 равных частей

 Деление окружности на десять равных частей

Разделив окружность на пять равных частей, легко можно разделить окружность и на 10 равных частей. Проведя прямые от получившихся точек через центр окружности до противоположных сторон окружности – получим ещё 5 точек.

Рис. 8. Деление окружности на 10 равных частей

Деление окружности на семь равных частей

Чтобы разделить окружность радиуса R на 7 равных частей, из точки пересечения центровой линии с окружностью (например, из точки А) описывают как из центра дополнительную дугу этим же радиусом R – получают точку В.  Опустив перпендикуляр с точки В – получим точку С.   Отрезок ВС равен длине стороны вписанного правильного семиугольника.

Рис. 9. Деление окружности на 7 равных частей

 

Источник: https://cherch-ikt.ucoz.ru/index/chtenie_chertezhej_3_1/0-15

Деление окружности – Страница 2

Деление круга на 10 равных частей. Деление окружности на равные части
Подробности Категория: Инженерная графика

ДЕЛЕНИЕ ОКРУЖНОСТИ НА РАВНЫЕ ЧАСТИ

Некоторые детали машин и приборов имеют эле­менты, равномерно расположенные по окружности, например, детали на рис. 52—59. При выполнении чер­тежей подобных деталей необходимо знать правила деления окружности на равное количество частей.

Деление окружности на четыре и восемь равных частей. На рис. 52, а показана крышка, в которой име­ется восемь отверстий, равномерно расположенных по окружности.

При построении чертежа контура крышки (рис. 52 г) необходимо разделить окружность на восемь равных частей. Это можно сделать с помощью угольника с углами 45° (рис.

52, в), гипоте­нуза угольника должна проходить через центр окруж­ности, или построением.

Два взаимно перпендикулярных диаметра окружно­сти делят ее на четыре равные части (точки 7, 3, 5, 7 на рис. 52, б). Чтобы разделить окружность на восемь равных частей, применяют известный прием деления прямого угла с помощью циркуля на две равные части. Получают точки 2, 4, 6, 8.

Деление окружности на три, шесть и двенадцать рав­ных частей. Во фланце (рис. 53, а) имеется три отвер­стия, равномерно расположенных по окружности. При выполнении чертежа контура фланца (рис. 53, г) нужно разделить окружность на три равные части.

Для нахождения точек, делящих окружность радиуса R на три равные части, достаточно из любой точки окружности, например точки А, провести дугу ради­усом R. Пересечения дуги с окружностью дают две искомые точки 2 и 3; третья точка деления будет нахо­диться на пересечении оси окружности, проведенной из точки Л, с окружностью (рис. 53, б).

Разделить окружность на три равные части можно также угольником с углами 30 и 60° (рис. 53, в), гипотенуза угольника должна проходить через центр окруж­ности.

На рис. 54, б показано деление окружности цирку­лем на шесть равных частей. В этом случае выполня­ется то же построение, что на рис. 53, б но дугу описы­вают не один, а два раза, из точек и радиусом R , равным радиусу окружности.

Разделить окружность на шесть равных частей можно и угольником с углами 30 и 60° (рис. 54, в). На рис. 54, а показана крышка, при выполнении чертежа которой необходимо выполнить деление окружности на шесть частей.

Чтобы выполнить чертеж детали (рис. 55, а), кото­рая имеет 12 отверстий, равномерно расположенных по окружностям, нужно разделить осевую окружность на 12 равных частей (рис. 55, г).

При делении окружности на 12 равных частей с помощью циркуля можно использовать тот же прием, что и при делении окружности на шесть равных частей (рис. 54, б),но дуги радиусом R описывать четыре раза из точек 1, 7, 4и 10 (рис. 55, б).

Используя угольник с углами 30 и 60° с последующим поворотом его на 180°, делят окружность на 12 равных частей (рис. 55, в).

Деление окружности на пять, десять и семь равных частей. В плашке (рис. 56, а) имеется пять отверстий, равномерно расположенных по окружности. Выпол­няя чертеж плашки (рис. 56, в), необходимо разделить окружность на пять равных частей. Через намеченный центр О (рис. 56, б)

при помощи рейсшины и уголь­ника проводят осевые линии и из точки О циркулем описывают окружность заданного диаметра. Из точки А радиусом R, равным радиусу данной окружности, проводят дугу, которая пересечет окружность в точке n. Из точки n опускают перпендикуляр на горизон­тальную осевую линию, получают точку С.

Из точки С радиусом R1 равным расстоянию от точки С до точки 1, проводят дугу, которая пересечет горизонтальную осевую линию в точке т. Из точки 1 радиусом R , рав­ным расстоянию от точки 1 до точки m, проводят дугу, пересекающую окружность в точке 2. Дуга 12 является 1/5 длины окружности.

Точки 3,4 и 5 находят, отклады­вая циркулем отрезки, равные m1.

Деталь «звездочка» (рис. 57, а) имеет 10 одинаковых элементов, равномерно расположенных по окружно­сти. Чтобы выполнить чертеж звездочки (рис. 57, я), следует окружность разделить на 10 равных частей. В этом случае следует применить то же построение, что и при делении окружности на пять частей (см. рис. 56, б). Отрезок п1 будет равняться хорде, которая делит окружность на 10 равных частей.

На рис. 58, а изображен шкив, а на рис. 58, в — чер­теж шкива, где окружность разделена на семь равных частей.

Деление окружности на семь равных частей пока­зано на рис. 58, б. Из точки А проводится вспомога­тельная дуга радиусом R, равным радиусу данной окружности, которая пересечет окружность в точке . Из точки n опускают перпендикуляр на горизонталь­ную осевую линию. Из точки 1 радиусом, равным отрезку nс, делают по окружности семь засечек и полу­чают семь искомых точек.

Деление окружности на любое число равных частей. С достаточной точностью можно делить окружность на любое число равных частей, пользуясь таблицей коэффициентов для подсчета длины хорды (табл. 9).

Зная, на какое число (n) следует разделить окруж­ность, находят по таблице коэффициент . При умно­жении коэффициента k на диаметр окружности D получают длину хорды l, которую циркулем отклады­вают на окружности n раз.

При построении чертежа кольца (рис. 59, а) необхо­димо окружность диаметра D=142 мм разделить на 32 равные части. Количеству частей окружности n=32 соответствует коэффициент k=0,098. Подсчитав длину хорды l=Dk=142×0,098= 13,9 мм, ее циркулем откла­дывают на окружности 32 раза (рис. 59, б и в).

Источник: https://forkettle.ru/vidioteka/tekhnicheskie-nauki/cherchenie/240-inzhenernaya-grafika-ot-omgtu/8614-postroenie?start=1

Bau-enginer

Деление круга на 10 равных частей. Деление окружности на равные части

Окружность — геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.

В данной статье Вы узнаете как разделить окружность на  3-6, 4-8, 5-10 и n частей.

Как разделить окружность на 3 и 6 частей

Для деления окружности на 3, 6 и кратное им количество частей проводим окружность заданного радиуса и со ответствующие оси. Деление можно начинать от точки пересечения вертикальной или горизонтальной оси с окружностью.

Заданный радиус окружности последовательно откладывается 6 раз. Затем полученные точки на окружности последовательно соединяются прямыми линиями и образуют правильный вписанный шестиугольник.

Соединение точек через однудает равносторонний треугольник, и деление окружности на 3 равные части.

Деление окружности на 3-6 равных частей

___________________________________________________________________________________________________

Как разделить окружность на 5 и 10 частей

Для того чтобы разделить окружность на 5 и 10 равных частей необходимо построить правильный пятиугольник. Для его построения необходимо выполнить следующее. Проводим две взаимно перпендикулярные оси окружности равные диаметру окружности. Делим правую половину горизонтального диаметра пополам с помощью дуги R1.

Из полученной точки «а» в середине этого отрезка радиусом R2 проводим дугу окружности до пересечения с горизонтальным диаметром в точке «b». Радиусом R3 из точки «1» проводят дугу окружности до пересечения с заданной окружностью (т.

5) и получают сторону правильного пятиугольника, затем откладывают полученное расстояние по окружности 5 раз до получения правильного пятиугольника. Расстояние «b-0» дает сторону правильного пятиугольник.

 Деление окружности на 5-10 равных частей

___________________________________________________________________________________________________

Как разделить окружность на n — равных частей

Иначе необходимо построить правильный многоугольник с n количеством сторон. Проводим горизонтальную и вертикальную взаимно перпендикулярные оси окружности. Из верхней точки «1″ окружности проводим под произвольным углом к вертикальной оси прямую линию.

На ней откладываем равные отрезки произвольной длины, число которых равно числу частей, на которые мы делим данную окружность, например 9 . Конец последнего отрезка соединяем с нижней точкой вертикального диаметра.

Провод им линии, параллельные полученной, из концов отложенных отрезков до пересечения с вертикальным диаметром, разделив таким образом вертикальный диаметр данной окружности на заданное количество частей. Радиусом равным диаметру окружности, из нижней точки вертикальной оси проводим дугу MN до пересечения с продолжением горизонтальной оси окружности.

Из точек M и N проводим лучи через четные (или нечетные) точки деления вертикального диаметра до пересечения с окружностью. Полученные отрезки окружности будут являться искомыми, т. к. точки 1, 2,… 9 делят окружность на 9 (N) равных частей.

Деление окружности на n равные части

___________________________________________________________________________________________________

Деление окружности на произвольное число равных частей можно производить с помощью таблицы хорд, численное выражение которых определяется умножением радиуса данной окружности на коэффициент, соответствующий числу деления, представленный в таблице.

Таблица хорд (коэффициентов для деления окружности) 

Число частей делений окружностиКоэффициент Число частей делений окружностиКоэффициент Число частей делений окружностиКоэффициент
 1 0,00011 0,282 21 0,149
 2 1,000 12 0,258 22 0,142
 3 0,866 13 0,239 23 0,136
 4 0,707 14 0,223 24 0,130
 5 0,588 15 0,208 250,125
 6 0,500 16 0,195 26 0,120
 7 0,434 17 0,184 27 0,116
 8 0,383 18 0,178 28 0,112
 9 0,342 19 0,165 290,108
 10 0,309 20 0,156 30 0,104

___________________________________________________________________________________________________

Как найти центр дуги окружности

Необходимо выполнить следующее: на данной дуге отмечаем четыре произвольные точки A, B, C, D и соединяем их попарно хордами AB и CD.

Каждую из хорд при помощи циркуля делим пополам, получив, таким образом, перпендикуляр, проходящий через середину соответствующей хорды. Взаимное пересечение этих перпендикуляров дает центр данной дуги и соответствующей ей окружности.

Приближенное деление дуги окружности на произвольное число равныx частей можно выполнить при помощи циркуля методом последовательного приближения.

Источник: https://bau-enginer.ru/?p=206

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.